
1 
 

 A simple predictive model for the eddy propagation 1 

trajectory in the South China Sea 2 

 3 

Jiaxun Li1,2, Guihua Wang*1, Huijie Xue3,4, and Huizan Wang5 4 

 5 

1Department of Atmospheric and Oceanic Sciences, Institute of Atmospheric Science, 6 

Fudan University, Shanghai, China 7 

2Naval Institute of Hydrographic Surveying and Charting, Tianjin, China  8 

3State Key Laboratory of Tropical Oceanography, South China Sea Institute of 9 

Oceanology, Chinese Academy of Sciences, Guangzhou, China 10 

4School of Marine Sciences, University of Maine, Orono, Maine, USA 11 

5Institute of Meteorology and Oceanography, National University of Defense 12 

Technology, Nanjing, China 13 

 14 

Corresponding author: Guihua Wang, Department of Atmospheric and Oceanic 15 

Sciences, Institute of Atmospheric Science, Fudan University, Shanghai, China. 16 

(wghocean@yahoo.com) 17 

18 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-116
Manuscript under review for journal Ocean Sci.
Discussion started: 1 November 2018
c© Author(s) 2018. CC BY 4.0 License.



2 
 

Abstract A novel predictive model is built for eddy propagation trajectory using the 19 

multiple linear regression method. This simple model has related various oceanic 20 

parameters to eddy propagation position changes in the South China Sea (SCS). These 21 

oceanic parameters mainly represent the effects of planetary   and mean flow 22 

advection on the eddy propagation. The performance of the proposed model is 23 

examined in the SCS based on twenty years of satellite altimeter data, and 24 

demonstrates its significant forecast skills over a 4-week forecast window comparing 25 

to the traditional persistence method. It is also found that the model forecast accuracy 26 

is sensitive to eddy polarity and forecast season.  27 

28 
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1. Introduction 29 

Mesoscale eddies are coherent rotating structures that are ubiquitous over most of the 30 

world’s oceans (Chelton et al., 2007). They play an important role in the transport of 31 

momentum, heat, mass and chemical and biological tracers, thereby become critical 32 

for issues such as general circulation, water mass distribution, ocean biology and 33 

climate change (Wang et al., 2012; Dong et al., 2014; Zhang et al., 2014; Ma et al., 34 

2016; Li et al., 2017). Therefore, forecasting the eddy propagation positions 35 

accurately is not only important scientifically but also important practically for 36 

problems such as ocean observing systems designing, fishing planning, and 37 

underwater acoustic detecting.  38 

 39 

Traditionally, ocean dynamical models were used as the tool of predicting the 40 

evolution of ocean eddies (Robinson et al., 1984). To make a useful forecast, 41 

accurately updated boundary data, satellite and in situ observation data for 42 

assimilation must be available, and a fair degree of computer power is needed 43 

(Rienecker et al., 1987; Oey et al., 2005). These restrictions preclude the all-pervading 44 

operational use of dynamical models when these initial data and computer power are 45 

not feasible due to some reasons.  46 

 47 

In this paper, we used a simple statistical method to predict the eddy positions 1-4 48 

weeks in advance using only the past positions of the eddy and its surrounding fields. 49 

Our “test block” of ocean is the South China Sea (SCS). It is a semi-enclosed sea 50 

under the dramatic influence of the East Asian Monsoon and Kuroshio intrusion (Liu 51 

and Xie, 1999; Shaw, 1991). Due to the variable external forcing and complex 52 

topography, mesoscale eddies show obvious geographic distributions and various 53 

characteristics (Wang et al., 2003; Xiu et al., 2010), but the common character is the 54 

overall westward tendency of eddy trajectories no matter of the eddy polarity (Fig. 1). 55 

We will first analyze the dynamics of the common westward movement of eddies in 56 

the SCS, then develop a simple predictive model of eddy trajectories, and finally 57 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-116
Manuscript under review for journal Ocean Sci.
Discussion started: 1 November 2018
c© Author(s) 2018. CC BY 4.0 License.



4 
 

discuss the impact of eddy polarity and season on the model forecast accuracy. 58 

2. Data and Methods 59 

2.1 Data 60 

The sea level anomalies (SLA) are from the Archiving, Validation and Interpretation 61 

of Satellite Oceanographic data (AVISO, ftp://ftp.aviso.oceanobs.com/) (Ducet et al., 62 

2000). The product merges the measurements of TOPEX/Poseidon, European Remote 63 

Sensing Satellite (ERS-1/2), Geosat Follow-on, Jason-1/2, and Envisat, and spans the 64 

period from October 14, 1992 to August 7, 2013. Its temporal resolution is weekly, 65 

and its spatial resolution is 0.25o latitude by 0.25o longitude. To estimate the 66 

large-scale geostrophic currents, we use the absolute dynamic topography (ADT), 67 

which consists of the SLAs and a mean dynamic topography (MDT). The method for 68 

calculating the MDT was introduced by Rio and Hernandez (2004), and the data is 69 

also distributed by AVISO. 70 

 71 

The monthly climatology of observed ocean temperature and salinity from U.S. Navy 72 

Generalized Digital Environment Model (GDEM-Version 3.0) is used to calculate the 73 

phase speed of nondispersive baroclinic Rossby waves in the SCS. It has a horizontal 74 

resolution of 0.25o latitude by 0.25o longitude, and 78 standard depths from 0 to 6600 75 

m with the vertical resolution varying from 2 m at the surface to 200 m below 1600 m 76 

(Canes, 2009).  77 

 78 

The SCS eddy trajectory data is derived from the 3rd release of the global eddy dataset 79 

(http://cioss.coas.oregonstate.edu/eddies/). The eddy positions within their trajectories 80 

are recorded at 7-day time intervals. A detailed description of the eddy trajectory 81 

dataset can be found in Chelton et al. (2011). To forecast the eddy trajectory 1-4 82 

weeks in advance using the last position of the eddy, only eddies with a lifetime of 5 83 

weeks or longer are retained in this study. 84 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-116
Manuscript under review for journal Ocean Sci.
Discussion started: 1 November 2018
c© Author(s) 2018. CC BY 4.0 License.



5 
 

2.2 Maximum Cross-Correlation Method 85 

The maximum cross-correlation (MCC) method is a space-time lagged technique, 86 

which can estimate the surface motions from time-sequential remote sensing images. 87 

It has been successfully used to track clouds from geosynchronous satellite data 88 

(Leese et al., 1971), to compute sea-ice motion (Ninnis et al., 1986) and advective 89 

surface velocities (Emery et al., 1986) from sequential infrared satellite images, and to 90 

determine the propagation velocities of ocean eddies from satellite altimeter data (Fu, 91 

2006; Zhuang et al., 2010).  92 

 93 

The MCC method mainly consists of two procedures (Fu, 2009): first, the 94 

cross-correlations of the SLA time series ( h ) with others within a certain range box 95 

are computed for some time lags ( T ) in multiples of 7 days (time resolution of SLA 96 

data) at each grid node location ( ,x y ) as: 97 

 , ( , , ) ( , , ) ( , , )x yC x y T h x y t h x x y y t T               (1) 98 

where x  and y  are the spatial lags and the over bar means time averaging. 99 

Second, the position of the maximum correlation at each time lag ( T ) is identified 100 

and a speed can be derived from the time lag and the distance of this position from the 101 

origin. Then an average speed vector ( ,u v ) weighted by the correlation coefficients is 102 

calculated from the estimates at various time lags as: 103 

 
( / , / )

( , ) i i i i ii

ii

x T y T C
u v

C

   
  


 (2) 104 

where iC  is the maximum correlation at iT , and ix , iy  are the distances 105 

between the position of maximum correlation and the origin. The average velocities 106 

are then assigned to the eddy movement velocities at the given grid point. To focus on 107 

the mesoscale in the SCS, the time lags are limited to less than 42 days, and the 108 

dimension of the search box is generally less than 300 km. To reduce incidental 109 

spurious MCC vectors, the maximum speed is set to 30 cm/s, since the phase speeds 110 

of baroclinic Rossby waves in the SCS are mostly lower than this threshold (Cai et al., 111 

2008).  112 
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3. Results 113 

3.1 Dynamics of Eddy Propagation in the SCS 114 

Instead of a Lagrangian description of the movement of individual eddies as reported 115 

in the previous studies (e.g., Wang et al., 2003; Chen et al., 2011), the space-time 116 

lagged MCC method provides an Eulerian description of the eddy propagation speed. 117 

As shown in Fig. 2a and 2d, the MCC method has mapped the propagation speeds of 118 

the eddies in the SCS for the winter and summer season, respectively. The 119 

propagation of the eddies is generally westward in the ocean interior and southward in 120 

the western boundary with the typical speed of 4-10 cm/s. The propagation direction 121 

of the eddies generated southwest of Taiwan is southwestward along the 200-2000 m 122 

isobaths, indicating the steering effects of the ocean’s bathymetry. There are two 123 

distinct differences between the winter season and the summer season: one is that the 124 

eddy propagation speed in winter is relatively larger than that in summer; and the 125 

other is that the influence of the western boundary current can be clearly seen near 126 

16oN-18oN along the Vietnam coast in winter, creating an organized band of 127 

southward eddy propagation pattern, while this cannot be found in summer. The 128 

different patterns of the eddy propagation speed in winter and summer have revealed 129 

several details of the mean flow in the SCS: the large-scale circulation under the 130 

influence of northeasterly winter monsoon is stronger than that in the southwesterly 131 

summer monsoon, and the robust western boundary current in winter becomes 132 

relatively weak and unorganized in summer.  133 

 134 

Eddies also have their own westward drift under the planetary   effect in the 135 

absence of any mean flow (Nof, 1981, Cushiman-Roisin, 1994). Their propagation 136 

speed is approximately the phase speed of the first baroclinic Rossby waves with 137 

preferences for small poleward and equatorward deflection of cyclonic and 138 

anticyclonic eddies in the global ocean, respectively (Chelton et al., 2007). 139 

Theoretically, the phase speed of the first baroclinic Rossby wave is 1 1RC R  , 140 
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where the first baroclinic Rossby radius of deformation 1R  is estimated using the 141 

climatological GDEM temperature and salinity data. Figure 2b (2e) shows the 142 

theoretical phase speed of nondispersive baroclinic Rossby waves calculated from 143 

GDEM winter (summer) climatological temperature and salinity data. The direction 144 

of the phase speed is due west and the magnitude increases from about 2 cm/s in the 145 

north latitude to 12 cm/s in the south latitude.  146 

 147 

The differences between the satellite observed propagation speed (Fig. 2a and 2d) and 148 

the propagation speed induced by the   effect (Fig. 2b and 2e) in winter and 149 

summer are shown in Fig. 2c and 2f, respectively, which may represent the 150 

propagation speed caused by the advection of mean flow. To further illustrate the 151 

advection effect of mean flow, the winter (summer) mean dynamic topography is 152 

superimposed on the propagation speed caused by the mean flow. As can be seen, 153 

there is a good spatial correlation (0.61 in the zonal direction and 0.52 in the 154 

meridional direction, both of which are significant at the 95% confidence level) 155 

between the cyclonic eddy propagation speed advected by the mean flow and the large 156 

scale surface cyclonic circulation in winter, both of which are centered northwest of 157 

the Luzon Island (Fig. 2c). Due to the weak cyclonic gyre in the northern SCS, the 158 

spatial correspondence in summer is not as obvious as that in winter (Fig. 2f). Since 159 

the propagation speed induced by the   effect is westward, this tendency is 160 

reinforced by the mean flow in the north, but compensated by the mean flow in the 161 

south. Because the mean flow in the south is not so strong, it is not able to reverse 162 

eddy propagation from its westward motion induced by the   effect as in the 163 

Antarctic Circumpolar Current region (Klocker and Marshall, 2014) no matter in 164 

winter or summer. 165 

 166 

To explore other possible causes of eddy propagation, Fig. 3a shows the annual mean 167 

eddy propagation speed. The most striking pattern is that the eddy propagation speed 168 
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is accelerated markedly on the northern continental shelf of the SCS (also can be seen 169 

in Fig. 2a and 2d), corresponding well to the region of negative maximum meridional 170 

topographic T

f dH

H dy
  , where H  is the water depth. Their correlation is -0.40, 171 

which is significant at the 95% confidence level. This relatively good correspondence 172 

suggests that besides the planetary   effect and advection of mean flow, the 173 

topographic   effect also contributes to the eddy propagation in some regions where 174 

the bathymetry gradient cannot be neglected. 175 

3.2 Model Development 176 

To develop a simple statistical predictive model for relating various oceanic 177 

parameters to eddy propagation position changes, the multiple linear regression is 178 

used for developing such statistical forecast models. This method has been 179 

successfully used in the forecast of tropical cyclone (TC) tracks (Neumann and 180 

Randrianarison, 1976; Aberson and Sampson, 2003), hurricane intensity (Demaria and 181 

Kaplan, 1994) and ENSO (Knaff and Landsea, 1997). In this study, the predictands 182 

(dependent variables) are the zonal and meridional displacements at each forecast 183 

time from the initial position. In choosing the potential predictors (independent 184 

variables), two factors are considered. First, the candidates should have a physical 185 

link (direct or indirect) with the eddy propagation. Second, the candidates must be 186 

available and accessible in advance. Based on these two considerations, eight 187 

potential predictors that are associated with eddy propagation are chosen (Table 1). 188 

All of these are derived along the eddy trajectories.  189 

 190 

These eight predictors can be divided into two categories: 1) those related to 191 

climatology and persistence, i.e., “static predictors”, and 2) those related to the 192 

changing environmental conditions, i.e., “synoptic predictors”. The static predictors 193 

consist of the first six predictors, while the last two are the synoptic predictors. Since 194 

the initial eddy position (LON, LAT) and the eddy motion past 1-week (U_PAST, 195 
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V_PAST) represent the initial conditions of the eddy, these persistence factors are 196 

crucial for the next position of the eddy. The climatological eddy zonal and 197 

meridional motions (U_CLIM V_CLIM) derived from the MCC method are chosen to 198 

take into account the effects of   and the mean flow advection, as discussed in 199 

Section 3.1. In reality, the large-scale circulation evolves during the forecast period, 200 

but this effect is not taken into account in the climatology and persistence factors. To 201 

help account for the time variation of the mean flow advection, the current zonal and 202 

meridional absolute geostrophic flows (U_ADT, V_ADT) derived from the satellite 203 

data are evaluated at the beginning of the forecast time along the eddy trajectory. The 204 

relative contribution of each predictor on each forecast period is illustrated by the 205 

normalized regression coefficient (Table 2). To generate the normalized coefficients, 206 

both the predictors and the predictands are normalized before they are incorporated 207 

into the regression model. The larger the normalized regression coefficient, the greater 208 

its contribution to the individual forecast equation. Persistence factors (U_PAST, 209 

V_PAST) are initially the most important predictors, while after 2 weeks the most 210 

important predictors are the climatology factors (U_CLIM, V_CLIM). The synoptic 211 

predictors (U_ADT, V_ADT) contribute less to the forecast equations comparing with 212 

persistence and climatology. The underlying reason may be that the week to week 213 

variations are too large so the representation of the initial U_ADT and V_ADT to the 214 

actual velocities in the 4-week window is not as good as the U_CLIM and V_CLIM. 215 

 216 

There are a total of 8 regression equations, i.e., both the meridional and zonal 217 

directions for the weeks of 1-4. We can separate the data into two sets: one for 218 

regressing and the other for forecasting. At week-1, we used 1981 (76%) eddy 219 

trajectory segments (the distances between the eddy positions at 7-day time interval) 220 

of 283 eddy trajectories during 1992-2008 for regressing, and 623 (24%) eddy 221 

trajectory segments of 81 eddy trajectories during 2009-2013 for forecasting. The 222 

other forecast experiments for 2, 3, and 4 weeks maintain the same periods for 223 

regressing and forecasting. To evaluate the overall forecast ability of the model, the 224 
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mean forecast error is defined as the averaged distance (D) between the predicted 225 

eddy positions and the satellite observed eddy positions following great circle 226 

distance (Ali et al., 2007): 227 

 arccos[sin sin cos cos cos( )]o F o F o FD R Y Y Y Y X X    228 

where R is the earth radius, oX  ( FX ) and oY ( FY ) represent the observed (forecast) 229 

longitude and latitude in degrees, respectively.  230 

 231 

Table 3 lists the number of sampling cases, root-mean-square error (RMSE) and 232 

correlation coefficient between the predicted and actual longitudes (latitudes), mean 233 

distance errors of our model and persistence method (no change of propagation speed 234 

from the initial state, Fig. 4a) over a 4-week horizon. It shows that the developed 235 

model beats the persistence method and indicates our model has some forecast skill: 236 

the RMSE between the predicted and the actual longitudes (latitudes) throughout the 237 

4-week horizon is 0.33-0.89 (0.30-0.73) degrees with the correlation 238 

coefficients >0.93 (>0.95). As an example, Fig. 5 compares the 1-2 weeks forecast 239 

performances of our model (blue) and the persistence method (green) with the 240 

observation (red). Generally, the eddy trajectory predicted 1-2 weeks in advance by 241 

our model coincides well with the observed trajectory with an overall average error of 242 

27.6 km (week-1) and 42.5 km (week-2), and even the convoluted pattern can be 243 

reproduced properly (Fig. 5 (right)) though the mean error is slightly larger than the 244 

smooth case. In contrast, although the persistence forecast trajectory at week-1 is 245 

relatively consistent with the observation (Fig. 5a and 5b), the persistence method 246 

cannot forecast the eddy trajectories properly when the forecast horizon increases (Fig. 247 

5c and 5d). This shows the superiority of our forecast model over the persistence 248 

method. 249 

3.3 Sensitive Performance of Different Eddy Polarity and Season 250 

Previous studies have shown that anticycloinc eddies and cyclonic eddies in the SCS 251 
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have different dynamic characteristics, such as generation sites, rotation speeds and 252 

propagation trajectories, and the seasonal variability of these eddies is robust (Wang et 253 

al., 2006; Wang et al., 2008; Li et al., 2011). Two natural questions arise: 1) is there 254 

any difference on the model forecast ability between anticyclonic eddies (Fig. 1a) and 255 

cyclonic eddies (Fig. 1b)? 2) If so, is there any difference on the forecast ability for 256 

one type of eddies in winter (Fig. 6a and 7a) and summer (Fig. 6b and 7b)? This 257 

section will explore the different model performances on two types of eddies and 258 

during different seasons in the SCS. 259 

 260 

The period considered for regressing and predicting the anticyclonic eddy and 261 

cyclonic eddy positions is the same as that used in developing the predictive model in 262 

Section 3.2. The mean forecast errors of anticyclonic (cyclonic) eddies from week-1 263 

to week-4 are 36.9 km (41.1 km), 62.6 km (68.1 km), 81.0 km (88.5 km), and 102.0 264 

km (108.2 km), respectively (Fig. 1c). These results show that the predicted trajectory 265 

errors of anticyclonic eddies are less than those of cyclonic eddies in all forecast 266 

horizon, and the maximum error difference can reach 7.5 km at week-3. To investigate 267 

the underlying reasons of different model performances for anticyclonic eddies and 268 

cyclonic eddies, we use the persistence error ( 2 2 2 cosCC AB BC AB BC        in 269 

Fig. 4a) at week-1 as an index to measure the difficulty of trajectory forecast. The 270 

underlying reason in physics is that CC , which includes the effects of winding angel 271 

( , measuring the trajectory curvature) and the eddy propagation distances in the 272 

former and latter periods (AB and BC, measuring the eddy propagation speed), is an 273 

integral characteristic of eddy trajectory. The correlation between this integrated index 274 

and eddy trajectory forecast error is relatively high with R=0.62, which is significant 275 

at the 95% confidence level and shows its ability of measuring the inherent difficulty 276 

of trajectory forecast: the larger the index, the more difficult the trajectory forecast, 277 

thus the larger the forecast error. Because the indices (mean persistence errors) of all 278 

the anticyclonic and cyclonic eddy trajectories in the SCS are 46.6 km and 53.0 km, 279 

respectively, it is not difficult to understand why the mean forecast error of 280 
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anticyclonic eddy trajectories is smaller than that of cyclonic eddy trajectories in the 281 

SCS. The index difference between anticyclonic and cyclonic eddy trajectories is 282 

caused by these different trajectory patterns (Fig. 1a and 1b), which could be due to 283 

the opposing meridional drifts of anticyclonic and cyclonic eddies expected from the 284 

combination of   effect and self-advection (Morrow et al., 2004). 285 

 286 

Figure 6c (Fig. 7c) shows the mean forecast errors of anticyclonic (cyclonic) eddy 287 

trajectories in winter and summer over a 4-week horizon. Because the mean 288 

persistence error (42.0 km) of anticyclonic eddy trajectories in winter is smaller than 289 

that (51.9 km) in summer, as expected, the mean forecast error of anticyclonic eddy 290 

trajectories in winter is smaller than that in summer for all cases. This is also the case 291 

for the cyclonic eddy: since the mean persistence error (54.6 km) of cyclonic eddy 292 

trajectories in winter is relatively larger than that (52.8 km) in summer, the mean 293 

forecast error of cyclonic eddy trajectories in winter is larger than that in summer. The 294 

index difference of one type of eddy trajectories between winter and summer is also 295 

caused by the different trajectory patterns. Why do the anticyclonic and cyclonic 296 

eddies follow different trajectories in winter (Fig. 6a and 7a) and summer (Fig. 6b and 297 

7b)? One possible dynamical reason is the different interactions between the eddies 298 

and seasonal mean flows. Other underlying factors such as eddy generation 299 

mechanisms and eddy-topography interactions in different seasons may also 300 

contribute. This is beyond the scope of this study and needs further investigation 301 

using numerical models. 302 

4. Summary and Discussion 303 

In this study we have investigated the underlying dynamics of the eddy propagation in 304 

the SCS and found the propagation of SCS eddies is mainly driven by the 305 

combination of the planetary   effect and mean flow. In addition, the topographic 306 

  effect also has some contribution to the eddy propagation where the bathymetry 307 

gradient cannot be neglected, like the steep continental shelf in the northern SCS (Fig. 308 
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1a). 309 

 310 

Based on the dynamical analysis, a simple statistical predictive model for relating 311 

various oceanic parameters to eddy propagation position changes is developed using 312 

the multiple linear regression method. This model is made up of two predictands 313 

(zonal and meridional displacements) and eight predictors (six static predictors, two 314 

synoptic predictors). The six static predictors are associated with the initial position, 315 

the zonal and meridional motions past 1-week, and the climatological eddy zonal and 316 

meridional motion. The other two synoptic predictors account for the time variation of 317 

the mean flow advection. Results showed that this simple model has significant 318 

forecast skills over a 4-week forecast horizon comparing the traditional persistence 319 

method. Moreover, the model performance is sensitive to eddy type and forecast 320 

season: 1) the predicted trajectory errors of anticyclonic eddies are smaller than those 321 

of cyclonic eddies; 2) the predicted trajectory errors of anticyclonic eddies in winter 322 

are smaller than those in summer; while the contrary is the case for the cyclonic eddy. 323 

The predictive model performance strongly depends on the inherent difficulty of 324 

trajectory forecast.  325 

 326 

Although the performance of the proposed predictive model is encouraging, it could 327 

be refined further. Further improvement may be possible by including the effect of 328 

eddy-eddy interactions on the eddy propagation, which is supposed to help induce the 329 

eddy trajectory curve or loop (Early et al., 2011). Another possible improvement is to 330 

replace the multiple regression method with machine learning (ML) techniques. 331 

Ashkezari et al. (2016) have shown that the ML methods particularly stand out in 332 

analyzing complex systems yet not fully understood, like estimating the eddy lifetime. 333 

These enhancements are topics warranting future research and development. 334 

 335 

 336 
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Data availability. The SLA and MDT data can be downloaded from AVISO 337 

(ftp://ftp.aviso.oceanobs.com/), and the SCS eddy trajectory data can be derived from 338 

the 3rd release global eddy dataset (http://cioss.coas.oregonstate.edu/eddies/). 339 
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Figure and Table Captions 442 

Figure 1. The trajectories of (a) anticyclonic and (b) cyclonic eddies with lifetime 5 443 

weeks in the South China Sea (SCS). The solid circle represents the ending position 444 

of each trajectory. In Fig. 1a, TI: Taiwan Island, LI: Luzon Islands, VN: Vietnam. The 445 

two isobaths are for 200 m and 2000 m, respectively. (c) Comparison of the mean 446 

forecast errors between anticyclonic eddies (red) and cyclonic eddies (blue) over a 447 

4-week window. 448 

 449 

Figure 2. Winter climatology of (a) eddy propagation speed directions (vectors) and 450 

magnitudes (color, cm/s), (b) The phase speed directions (vectors) and magnitudes 451 

(color, cm/s) of the first baroclinic Rossby wave. (c) The speed difference (vectors) 452 

between (a) and (b) superimposed on the winter mean absolute dynamic topography 453 

(color, cm). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for the 454 

summer. 455 

 456 

Figure 3. (a) Annual mean of eddy propagation speed directions (vectors) and 457 

magnitudes (color, cm/s). (b) Meridional distribution of the topographic   effect 458 

(color shading).  459 

 460 

Figure 4. (a) Schematic of persistence method. A, B, and C are three observed eddy 461 

positions on the trajectory every 1 week interval. C' is the predictive eddy position 1 462 

week in advance by persistence method, that is BC'=AB. Thus CC' is the persistence 463 

error at week-1. (b) Scatterplot of persistence error versus forecast error of our model 464 

at week-1 with best fit linear regression. 465 

 466 

Figure 5. A comparison of the satellite observed trajectory (red), the predicted 467 

trajectory by our model (blue) and persistence trajectory (green) at (a) week-1, (c) 468 

week-2. (b), (d) are the same as (a) and (c), respectively, but for a recurved trajectory. 469 

The biweekly eddy positions on each trajectory are shown by the solid circles. 470 
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Figure 6. The trajectories of anticyclonic eddies in (a) winter and (b) summer with 471 

lifetime 5 weeks in the South China Sea (SCS). The solid circle represents the 472 

ending position of each trajectory. (c) Comparison of their mean forecast errors over a 473 

4-week window. 474 

 475 

Figure 7. The same as Fig. 6, but for the cyclonic eddies. 476 

 477 

 478 

Table 1. The Eight Predictors Used in the Predictive Model. 479 

 480 

Table 2. Normalized Regression Coefficients for Use with the Eddy Zonal 481 

(Meridional) Motion Prediction Equation. 482 

 483 

Table 3. Statistics of our Predictive Model for Different Forecast Time of Eddy 484 

Propagation Positions in Terms of Longitudes (Latitudes). 485 

486 
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 496 

 497 

Figure 2. Winter climatology of (a) eddy propagation speed directions (vectors) and 498 

magnitudes (color, cm/s), (b) The phase speed directions (vectors) and magnitudes 499 

(color, cm/s) of the first baroclinic Rossby wave. (c) The speed difference (vectors) 500 

between (a) and (b) superimposed on the winter mean absolute dynamic topography 501 

(color, cm). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for the 502 

summer. 503 
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 505 

 506 

Figure 3. (a) Annual mean of eddy propagation speed directions (vectors) and 507 

magnitudes (color, cm/s). (b) Meridional distribution of the topographic   effect 508 

(color shading). 509 

510 
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 511 

 512 

Figure 4. (a) Schematic of persistence method. A, B, and C are three observed eddy 513 

positions on the trajectory every 1 week interval. C' is the predictive eddy position 1 514 

week in advance by persistence method, that is BC'=AB. Thus CC' is the persistence 515 

error at week-1. (b) Scatterplot of persistence error versus forecast error of our model 516 

at week-1 with best fit linear regression. 517 
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 519 

 520 

Figure 5. A comparison of the satellite observed trajectory (red), the predicted 521 

trajectory by our model (blue) and persistence trajectory (green) at (a) week-1, (c) 522 

week-2. (b), (d) are the same as (a) and (c), respectively, but for a recurved trajectory. 523 

The biweekly eddy positions on each trajectory are shown by the solid circles. 524 
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Figure 6. The trajectories of anticyclonic eddies in (a) winter and (b) summer with 528 

lifetime 5 weeks in the South China Sea (SCS). The solid circle represents the 529 

ending position of each trajectory. (c) Comparison of their mean forecast errors over a 530 

4-week window. 531 

532 

Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-116
Manuscript under review for journal Ocean Sci.
Discussion started: 1 November 2018
c© Author(s) 2018. CC BY 4.0 License.



26 
 

 533 

 534 

Figure 7. The same as Fig. 6, but for the cyclonic eddies. 535 
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Table 1. The Eight Predictors Used in the Predictive Model 537 

 538 

NO Predictor Description 

1 LON Initial longitude 

2 LAT Initial latitude 

3 U_PAST Eddy zonal motion past 1-week 

4 V_PAST Eddy meridional motion past 1-week 

5 U_CLIM Climatological eddy zonal motion from MCC 

6 V_CLIM Climatological eddy meridional motion from MCC 

7 U_ADT Initial zonal absolute geostrophic flow  

8 V_ADT Initial meridional absolute geostrophic flow 

539 
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Table 2. Normalized Regression Coefficients for Use with the Eddy Zonal (Meridional) Motion 540 

Prediction Equation 541 

 542 

NO Predictor 1 week 2 weeks 3 weeks 4 weeks 

1 LON -0.10 (0.03) -0.14 (0.04) -0.18 (0.05) -0.24 (0.06) 

2 LAT 0.10 (0.02) 0.13 (0.01) 0.16 (0.00) 0.18 (-0.03) 

3 U_PAST 0.26 (0.00) 0.21 (0.03) 0.19 (0.07) 0.18 (0.09) 

4 V_PAST -0.02 (0.19) -0.01 (0.10) 0.01 (0.08) 0.00 (0.08) 

5 U_CLIM 0.14 (0.09) 0.19 (0.13) 0.23 (0.16) 0.26 (0.16) 

6 V_CLIM 0.05 (0.17) 0.07 (0.23) 0.09 (0.26) 0.16 (0.27) 

7 U_ADT -0.05 (0.02) -0.07 (0.02) -0.07 (0.02) -0.07 (0.03) 

8 V_ADT -0.03 (-0.07) -0.01 (-0.08) 0.02 (-0.09) 0.04 (-0.09) 
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Table 3. Statistics of our Predictive Model for Different Forecast Time of Eddy Propagation Positions in Terms of Longitudes (Latitudes) 543 

 544 

Forecast 

weeks 

Total (Predicted ) 

Number of Points 

RMSE, 

degrees 

Correlation 

Coefficient 

Mean Distance  

Error, km 

Mean Distance Error 

From Persistence, km 

1 2604 (623) 0.33 (0.30) 0.99 (0.99) 38.1 47.6 

2 2310(549) 0.55 (0.47) 0.97 (0.98) 64.8 95.2 

3 2016 (475) 0.72 (0.61) 0.95 (0.97) 86.6 135.0 

4 1722 (401) 0.89 (0.73) 0.93 (0.95) 106.5 180.5 

 545 
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